Lab Culture

- Take Notes: You won’t remember everything
- Document everything
 - Readable
 - Don’t erase changes just place a line through so you can remember why you made the change
 - If you can read it later why did you take your notes
 - Easy to understand
 - Number pages
 - Stay organized
- Notes for your notes
 - Date every entry
 - Make side notes if you write something that you didn’t quite understand
- Define terms
 - Keep track of terms that you will use often and have the definition in your own words for future reference.
- Understanding Rules and Expectations
 - Safety
 - Always be aware of your surroundings
 - Lab Safety is the first thing learned in each lab
 - It’s for your own safety
 - Accountability
 - Be responsible: you’re doing this because you want to
 - Be self motivated and able to work independently
- Promote teamwork
 - You can get more done as a team that works well together
 - A team is only as strong as its weakest link
- Productivity
 - Keep working
 - Never sacrifice quality for quantity or speed
What Is Research?

- “Investigation of an idea using the scientific method.”

<table>
<thead>
<tr>
<th>Scientific Method</th>
<th>Engineering Method</th>
<th>Research Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>State your question</td>
<td>Define the problem</td>
<td>Identify and develop your topic</td>
</tr>
<tr>
<td>Do background research</td>
<td>Do background research</td>
<td>Literature Survey</td>
</tr>
<tr>
<td>Formulate your hypothesis</td>
<td>Specify requirements</td>
<td>Set Goals</td>
</tr>
<tr>
<td>Design experiment, establish</td>
<td>Create multiple solutions, and</td>
<td>Theoretical Methods</td>
</tr>
<tr>
<td>procedure</td>
<td>choose the best one</td>
<td></td>
</tr>
<tr>
<td>Test your hypothesis</td>
<td>Build prototype</td>
<td>Experimental Methods</td>
</tr>
<tr>
<td>Analyze your results and draw</td>
<td>Test and redesign as needed</td>
<td>Data analysis and interpretation</td>
</tr>
<tr>
<td>conclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicate results</td>
<td>Communicate results</td>
<td>Communicate results</td>
</tr>
</tbody>
</table>

Identify and develop your topic

- Finding a Research Topic
 - What interests you?
 - What is relevant?
 - What does your mentor want you to research?
 - Interest into a Topic
 - What topics in your field relate to your interest?
 - Develop your idea into a topic with a mentor.
 - Search for similar topics being researched.

- Develop a Question
 - Start thinking about the who, what when and where?
 - Focus on the How and why?
 - Begin writing questions that your research could answer.
 - Ask yourself the Questions
 - Who cares?
 - Why would others think it’s a question worth asking?
Question to Topic

- Develop the answers
 - Name your topic....
 - ‘I am trying to learn about______.’
 - Add an indirect question.....
 - ‘I am studying/work ing on______’
 - Because I want to find out
 - who/what/where/whether/why/how___’

- Example
 - I am studying the effects of synthetic jet flow on an airfoil trailing edge.
 - Because I want to find out if synthetic jets can prolong an airfoil stall.
 - In order to make more efficient turbine engine blades.

Significance

- Ask a question that will solve a problem
 - Is the problem of current interest?
 - Is it likely to continue in the future?
 - How large is the population that is affected by the problem?
 - Would research findings lead to some useful change?
 - Is there evidence or support for continued research?
 - What current research is being completed in a similar problem?

Literature Survey

- Don’t start from nothing
 - Be a smart researcher: use the library, internet, and articles to find information.
 - Types of information
 - When looking through literature take note of the researchers involved, time period and credibility.
 - Look for current similar topics as your topic.
 - Find articles that can give examples of the best ways to do things to prevent the same mistakes they did.
• Use your literature survey to find more literature
 ◦ Most of the time researchers reference other researchers
 ◦ Document everything
 ◦ Organize your Literature survey so you can refer back as needed during the research process.
 ◦ Cite Sources: Good preparation for final research report.
 ◦ Literature Survey is a continuous process throughout the research process

Set Goals

• What are the variables?
 ◦ Independent variables
 ◦ Not changed by other factors
 ◦ Can be controlled
 ◦ Dependent variables
 ◦ The outcome of another factor could change this

• What will be measured?
 ◦ Ex: Lift, Drag, Temperature, Growth, divergence, convergence

• What relationships will be examined?
 ◦ Ex: Angle of Attack vs. Lift, Decay vs. Time, Convergence vs. Iterations

• Set yourself a timeline with deadlines
 ◦ Think back to your problem statement and question you want to answer.
 ◦ Plan monthly weekly and daily deadlines

• Time management
 ◦ Don’t wait till last minute
 ◦ Break down projects with time goals

Theoretical Methods

• What equations will be used?
 ◦ Governing equations
 ◦ Simplified methods
 ◦ Assumptions

• Organize calculation
 ◦ Excel
 ◦ Visual Basic Coding
 ◦ Matlab
 ◦ Write all equations out to verify correctness
• What are the physics behind the issue?
 ○ The relation between theory and experiment
 • Simplified methods – Ex: Laminar, Turbulence
• Once the theory is found is it testable
 ○ Is it physically not testable
 ○ Micro scale
 ○ Too big
 ○ Not costly
• Some research can’t be tested

Experimental Methods

• Things to consider
 ○ What experiments will be ran?
 ○ Where will you run them?
 ○ When will you be able to?
 ○ How long will it take to get sample data?
 ○ Who will be conducting experiments?
 ○ Set up
 ○ Materials
 ○ Manufacturing
 ○ Assembly
 ○ Data Acquisition systems

• Costs
 ○ From setup to final time spent
 ○ Who will budget the finance?
 ○ How will you get Funding?
 ○ Running experiments
 ○ Configurations
 • Time management
 ○ Test Plan
 • Plan of action
 ○ Is data valid?
 • Is there a control test
Data Analysis

- Is the data collected acceptable
 - Outliers
- What type of graph is needed to express the results?
 - Ex: Pie chart, Line graphs, Log
 - Are you able to graph your relations in your goals?
- What was the conclusion?
 - Was your question answered?
 - Does the problem statement need to be changed?
 - How well does the experimental match the theoretical?

Does the problem statement need to be changed?
- Did you consider all the variables?
 - Is an iteration necessary?
 - Do you need to rethink the methods?
 - Did you consider the error?
- What type of error is being produced?
 - Controlled error
 - Bias
 - Acceptable error
 - Within a range
- Were all the goals met?

Communicate Results

- Final Report
 - Course Requirement
 - Master’s thesis
 - Competitions
 - Publication in a Scientific Journal
 - Follow Scientific journal writing standards
 - AIAA technical journal formatting
 - Presentation
 - Classrooms
 - Campus
 - Thesis Defense
 - Competitions